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The free R factor is used routinely as a cross-validation tool in

macromolecular crystallography. However, without any means

of deriving quantitative estimates of its expected value and

variance, its application has been rather subjective and its

usefulness therefore somewhat limited. In the ®rst part of this

series, estimates of the expected value of the ratio of the free R

factor to the standard R factor at the convergence of the

structure re®nement were given. Here, estimates of the

variance of this ratio are given and are compared with the

observed deviations from the expected values for a selection

of re®ned structures. It is discussed how errors in the

functional form of the structure-factor model as well as other

types of errors might in¯uence this ratio.
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1. Introduction

Macromolecular structure re®nement from diffraction data

presents a particular challenge to the crystallographer when

there is a small parameter-to-observation ratio. In such cases,

it may be possible to drive down an R factor without

improving the model structure (BraÈndeÂn & Jones, 1990;

Kleywegt & Jones, 1995). In order to combat such problems,

BruÈ nger introduced the idea of an Rfree (BruÈ nger, 1992, 1993)

based on the standard statistical modelling technique of jack-

kni®ng or cross-validatory statistics (McCullagh & Nelder,

1989). The Rfree is the same as the conventional R factor, but

based on a test set consisting of a small percentage (usually

�5±10%) of re¯ections excluded from a structure re®nement.

The remaining re¯ections included in the re®nement are

known as the working set.

In an earlier paper (Tickle et al., 1998b), we reviewed the

development of the use of Rfree as a cross-validation tool in

macromolecular crystallography and noted that the behaviour

of this statistic had yet to be put on a ®rm theoretical footing.

The need for more understanding of the behaviour of Rfree has

also been highlighted by Dodson et al. (1996). As a ®rst step

towards this goal, we derived the expected values of cross-

validation statistics arising from a test set of re¯ections

excluded from a converged least-squares re®nement of a

crystal structure. We assumed that there were only random

experimental and model errors and that these errors were

re¯ected in the weighting of the observations and restraints. In

particular, we introduced the Rfree ratio, which is the ratio of

Rfree (based on the test set) to the standard R factor (based on

the working set). We derived the expected value of this ratio

and noted that the derivation requires the assumption that the

variances of all structure amplitudes are equal. The use of the

generalized R factors avoids this assumption and is to be



preferred. Using these R factors, the Rfree ratio is written as

RGratio.

In this paper, we take the work further, exploring the

variation of the RGratio about its expected value. This variation

is a consequence in part of statistical ¯uctuations and hence

we derive the variances of cross-validation statistics. It is also a

consequence of the breakdown of the assumptions behind the

statistical model and we discuss the effect on these statistics.

We also examine the observed variation from expected values

seen both in our own re®nements of eye-lens proteins and in

crystal structures from the Protein Data Bank (Bernstein et al.,

1977). Finally, we examine the variation of cross-validation

statistics as a function of the choice and size of test set. Errors

in the functional form of the structure-factor model, errors

arising from false minima and errors arising from under-

re®nement may all perturb the RGratio away from its theor-

etical value; this topic is further explored in x6. Algebraic

derivations have been relegated to appendices.

2. Definitions

For convenience, the de®nitions of symbols used in this paper

and its appendices are grouped together in Table 1. Where

relevant, all quantities are assumed to be evaluated at the

convergence of the re®nement.

3. Earlier work

In earlier papers (Tickle et al., 1998a,b), we have derived the

expected values of cross-validation statistics arising from the

least-squares re®nement of macromolecular structures. We

assumed that the re¯ections had been weighted by the inverse

of a VCM which re¯ected the random experimental and

model errors. In this case, we showed that at the convergence

of a least-squares re®nement the expected value of the sum of

squares of the weighted residuals in a working set is given by

hDinci � nÿPn
i�1

wia
T
i Hÿ1ai; �1�

where the angle brackets denote the statistical expectation.

Similarly, the expected value of the sum of squares of the

weighted residuals in a test set is given by

hDfreei � p�Pp
i�1

wib
T
i Hÿ1bi: �2�

The above summation can be written in terms of the trace of Q

[see Appendix A, equation (18)],

hDfreei � p� tr�Q�: �3�
The derivation of the above expressions assumes that the

weighting of both the working set and the test set is on an

absolute scale and that it correctly re¯ects both the random

experimental and model errors.

The right-hand sides of (1) and (2) can be evaluated directly

if the least-squares normal matrix H can be inverted.

Although matrix inversion in macromolecular re®nement is

becoming more feasible with the increasing memory sizes of

modern computers, it is still not routinely possible in many

laboratories. We therefore developed approximations to (1)

and (2) which were expressed in terms of quantities readily

available (Tickle et al., 1998b). At convergence, the expected

value of the sum of squares of the weighted residuals for the

free set, hDfreei, can be approximated by

hDfreei ' �p=f ��f � d�; �4�
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Table 1
De®nitions and abbreviations.

Scalars
a d/Na

d m ÿ r + Drest

D
P

wi�jFobsji ÿGjFcalcji�2, the weighted sum of squares of
residuals (deviance)

Dinc D based on a working set of f re¯ections
Dfree D based on a test set of p excluded re¯ections
Dratio (fDfree/pDinc)

1/2

Drest D based on the geometric and other restraints
Dtotal Dinc + Drest

f The number of structure amplitude observations included
in the re®nement in the working set

m The number of parameters being re®ned
n The number of observations, including any restraints, in the

re®nement
Na The number of atoms in the re®nement
p The number of observations excluded from re®nement

(the test set)
r The number of restraints included in the re®nement

(r = n ÿ f)
R

P��jFobsji ÿGjFcalcji
��=P jFobsji, the standard R factor

RG �Pwi�jFobsji ÿGjFcalcji�2=
P

wijFobsj2i �1=2, the generalized R
factor

Rinc & RGinc R factors based on all re¯ections in the working set
Rfree & RGfree R factors based on a test set of p excluded re¯ections
RGratio RGfree/RGinc

wi The weight of the ith observation
�

P
wijFobsj2i

�inc � based on a working set of f re¯ections
�free � based on a test set of p excluded re¯ections

Column matrices
ai The ith row of A
bi The ith row of B
f The n observations employed in the re®nement (structure

amplitudes and target distances)
f̂ The least-squares estimates of f
g The p excluded observations (structure amplitudes and/or

target distances)
ĝ The estimates of g calculated from x̂
x̂ The least-squares estimates of the m parameters

Rectangular matrices
A The least-squares design matrix of derivatives of order

n � m
B The p � m matrix analogous to A but involving the

excluded observations
Dfree The p � p VCM of the unweighted residuals (g ÿ ĝ) in the

test set
H The m � m normal matrix given by ATWA
Ip A p � p unit matrix
Q The p � p symmetric matrix given by W1=2

freeBHÿ1BT W1=2
free

W The n � n symmetric weight matrix of f
Wfree The p � p symmetric weight matrix of g
� The VCM of the experimental and model errors
�free � of the excluded observations only

Abbreviations
tr The trace of a square matrix
VCM The variance-covariance matrix which re¯ects the random

model and experimental errors
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while the corresponding expected value for the working set is

approximated by

hDinci ' f ÿ d; �5�
where d can be regarded as an effective number of re®ned

parameters. The scaled ratio of the quantities in (4) and (5)

gives an estimate of the RGratio as

RGratio �
RGfree

RGinc

' f � d

f ÿ d

� �1=2

: �6�

For the special case of unrestrained re®nement, d reduces to m

in the above equations. In this paper, we also use the statistic

Dratio, whose estimate is

Dratio ' � f � d�=� f ÿ d�: �7�
Unlike R-factor ratios, this statistic is less affected by corre-

lations between numerator and denominator and is thus better

for comparison with theory than the RGfree ratio.

It should be noted that the use of the approximate equa-

tions (4), (5), (6) and (7) assumes that the restraint weights are

on an absolute scale. For geometric restraints, this implies that

the reciprocals of the variances of geometric parameters, such

as those derived from Engh & Huber (1991), should be used as

weights when re®ning protein structures. The assumption that

the re¯ections are weighted on an absolute scale is not

required for the calculation of the estimates of RGratio or Dratio,

because the right-hand sides of (6) and (7) are independent of

the re¯ection weights.

4. Variation of cross-validation statistics

4.1. Variance of Dfree, RGfree and RGratio

In order to use Dfree to assess the validity of re®nement

models, it is necessary know the likely variation of Dfree about

its expected value. Whereas the derivation of the expected

value of Dfree only needs knowledge of the second moments of

the error distribution, derivation of expressions for the

variance of Dfree requires assumptions about the fourth

moments of the errors. In Appendix A it is shown that if these

errors are assumed to be normally distributed then the

variance of Dfree can be written in terms of the trace of the

matrix Q,

var�Dfree� � 2tr�Ip �Q�2
� 2�p� 2tr�Q� � tr�Q2��: �8�

In contrast to Dfree, RGfree and RGratio are independent of the

absolute scale of the weights; in Appendix A we derive the

following expression for their fractional standard deviations,

��RGfree�
RGfree

' ��RGratio�
RGratio

' �p� 2tr�Q� � tr�Q2��1=2

�2�1=2Dfree

:

These quantities may be used to test whether an observed

RGfree or RGratio deviates signi®cantly from its estimated value

as given by Tickle et al. (1998b). Hypothesis tests will rely on

the central limit theorem to ensure that the relevant distri-

butions are approximately normal.

4.2. Calculation of the variance of Dfree, RGfree and RGratio

The evaluation of the expressions for the variances given in

the previous section requires the calculation of tr(Q) and

tr(Q2). If the weight matrix is diagonal, the trace of Q can be

expressed as

tr�Q� �Pp
i�1

wib
T
i Hÿ1bi

and does not require explicit evaluation of Q. However, the

trace of Q2 is the square of the Frobenius norm of Q,

tr�Q2� � kQk2 �Pp
i�1

Pp
j�1

Q2
ij; �9�

and each unique element of Q must be evaluated as

Qij � �wiwj�1=2bT
i Hÿ1bj: �10�

If the evaluation of tr(Q2) is computationally too demanding,

an approximation may be developed for var(Dfree) if it is

assumed that the eigenvalues of Q are equal (Appendix B). In

this case,

var�Dfree� ' 2p�f � d�2=f 2: �11�
Fractional standard errors are often of more practical value. In

Appendix B, it is shown that the fractional standard error of

Dfree may be estimated as

��Dfree�=Dfree ' �2=p�1=2: �12�
If the smaller errors in Dinc, �inc and �free are ignored, the

fractional error in RGfree and RGratio is given by halving the

above estimate,

Table 2
Basic data for B- and �B2-crystallin.

B-crystallin �B2-crystallin

Data resolution (AÊ ) 1.49 2.10
Space group P41212 I222
Protein molecules per asymmetric unit 1 1
Number of residues 174 181
Non-H protein atoms 1478 1472
Ordered solvent molecules 230 92
Number of re¯ections 26151 18583

Table 3
B- and �B2-crystallin least-squares structure re®nement.

Minimization against working set of re¯ections plus geometric restraints.

B-crystallin �B2-crystallin

Parameters re®ned (m) 6844 6266
Re¯ections in working set ( f) 24788 17622
Re¯ections in test set ( p) 1363 961
Geometric restraints (r) 3887 3853
Total observations used (n) 28675 21475
Deviance from geometry (Drest) 1137 696
Deviance from re¯ections (Dinc) 20701 14522
Deviance from all data (Dtotal) 21838 15218
Expected value of deviance (n ÿ m) 21831 15209



��RGfree�
RGfree

' ��RGratio�
RGratio

' 1=�2p�1=2: �13�

5. Observed values of cross-validation statistics

5.1. Calculation of Dfree, RGfree and RGratio from crystallin
refinements

In order to deploy the above theory, we carried out

re®nements of B- and �B2-crystallin, which are proteins

found in the ®bre cells of the eye lens. The crystal data for the

proteins are listed in Table 2 and the re®nement statistics are

given in Table 3. The work was carried out using the least-

squares re®nement program RESTRAIN (Haneef et al., 1985;

Driessen et al., 1989), with weighting of observations on an

absolute scale as described in Tickle et al. (1998a). Provided

that the number of parameters is small relative to the number

of re¯ections, the estimates of RGratio and Dratio are not

particularly sensitive to small errors in the weighting of the

structure-amplitude terms relative to the geometrical

restraints. This is because errors in Drest, and hence d, are small

compared with f and so do not signi®cantly affect the value of

RGratio (6).

The starting atomic models were those obtained in Tickle et

al. (1998a). For each crystallin, we took one test set comprising

about 5% of the data and re®ned the model against the

corresponding working set using the full normal equations

matrix, H. All cross terms, including the scale factor G posi-

tional parameters and temperature factors, were included in

H. The re®nements were terminated when the fractional

parameter shifts were of the same order as the square root of

the machine single precision (Press et al., 1992). At this stage,

the re®nement was as close as possible to the local function

minimum and was at least near the global minimum. The

normal matrix was then inverted and used to calculate the

matrix Q. The expected values of Dfree were calculated using

(2). The standard deviations of these values were calculated

using (8), (9) and (10).

It should be noted that the protocol adopted for deriving

these re®nement statistics assumes that the initial crystal

structure models are free from gross errors. This protocol is

quite different from that required for validating a crystal

structure. In the latter case, the test set

should be separated from the working set

at the beginning of structure analysis. In

this way, RGfree is independent of RG

throughout the course of the re®nement,

allowing the RGratio to assist in the

recognition of serious errors in the earlier

stages of the analysis. The test set should

be reintroduced at the end of re®nement,

where possible.

The statistics from these re®nements

are shown in Table 4. The theory

presented in this paper and in its prede-

cessor (Tickle et al., 1998b) is only

applicable at the global least-squares

minimum. It refers to the expected values of R-factor statistics

at the termination of a re®nement but not during the course of

a re®nement. Hence, the values of statistics shown in the

tables are all at the termination of re®nement. They were

obtained using many more cycles of re®nement than had been

deemed necessary for publication of the crystallin crystal

structures themselves. As the structure re®nement converged

against the working set, it was interesting to note that RGratio in

the �B2-crystallin re®nement steadily rose, starting at about
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Table 4
Statistics from B- and �B2-crystallin least-squares structure re®nements.

Statistic Origin Reference B-crystallin �B2-crystallin

d m ÿ r + Drest De®nition 4094 3109
Dfree Observed 1872 1353
hDfreei p + tr(Q) Eq. (3) 1663 1196

Approximation, (p/f)( f + d) Eq. (4) 1588 1131
�(Dfree) {2[p + 2 tr(Q) + tr(Q2)]}1/2 Eq. (8) 64 55

Approximation, (2p)1/2( f + d)/f Eq. (11) 61 52
RGinc Observed 0.226 0.213
RGfree Observed 0.291 0.279
RGratio Observed 1.29 1.31

Estimated [( f + d)/( f ÿ d)]1/2 Eq. (6) 1.18 1.20
�(Dfree)/Dfree (2/p)1/2 Eq. (12) 0.038 0.046
�(RGfree)/RGfree 1/(2p)1/2 Eq. (13) 0.019 0.023
s(Rfree)/Rfree 1/p1/2 BruÈ nger (1997) 0.027 0.032

Figure 1
Plot of the Rfree/Rinc ratios and their estimated errors as a function of Na/f
for 157 macromolecular structures in the Protein Data Bank, where Na is
the number of atoms included in the re®nement and f is the number of
re¯ections used. Only structures in the resolution range 1.5±2.1 AÊ are
shown. The error bars were calculated as 1/(2p)1/2 of the Rfree ratio, where
p is the number of re¯ections in the test set. Also shown are the data
points for the B- and �B2-crystallin structures discussed in this paper,
shown as large bold circles and labelled  and �, respectively. The four
curves correspond to different values of the variable a de®ning the
re®nement regime used: a = 1 represents three parameters per atom (i.e.
restrained re®nement of atomic coordinates only plus an overall
temperature factor); a = 2 is for four parameters per atom (restrained
re®nement of coordinates plus individual isotropic temperature factors);
a = 4 represents unrestrained re®nement with four parameters per atom;
a = 7 represents nine parameters per atom (restrained anisotropic
re®nement).
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one standard deviation less than the expected value and rising

to three standard deviations above that value. This was a

consequence more of a rise in RGfree than of a fall in RG.

5.2. Statistical approximations from crystallin refinements

Table 4 also shows approximations to statistics from the

re®nements of B- and �B2-crystallin which do not require

the calculation of the matrix Q or any matrix inversion. The

expected value and standard deviation of Dfree calculated from

the approximate formulae may be compared with those

derived from the more exact calculations. The approximate

expressions do not re¯ect the fact that the expected value and

variance of Dfree depend on the particular test set. The

approximate formula for the variance of Dfree shown in (11)

neglects the variation of the eigenvalues of Q. Consideration

of (25) shows that this is likely to lead to underestimation of

the variance of Dfree. The approximate formulae do indeed

underestimate the variance by about 5%.

Finally, Table 4 also shows results from approximate

formulae for RGratio and the fractional standard deviations of

Dfree and RGfree.

5.3. Rinc and Rfree in the Protein Data Bank

We also examined 157 X-ray structures from the Protein

Data Bank (Bernstein et al., 1977) which had been determined

to a resolution between 1.5 and 2.1 AÊ and for which Rinc and

Rfree data were available. The statistically more tractable

generalized R factors would have been used had they been

available from all re®nement programs. We plotted the

Rfree/Rinc ratios as a function of Na/f. We also plotted curves

(Fig. 1) which represent the estimated RGratios for different

re®nement regimes calculated in the same way as described in

Tickle et al. (1998b).

The crystallin Rfree/Rinc ratios lie three to four standard

deviations above the expected positions on the a = 2 curve, the

approximate curve for restrained isotropic re®nement.

5.4. Jack-knife tests

The Protein Data Bank results have generally been

concerned with single test sets for each protein and, in the case

of the crystallins, the variance calculated from (8) measures

the variation to be expected in Dfree owing to model and

experimental errors for a given test set.

We now consider the effect on the R factors and RGratio of

choosing different test sets. We have examined the effect of

different test sets on crystallin re®nements, but we have not

developed any theory to cover this case, as multiple test sets

are not regularly used in practice. However, BruÈ nger (1997)

has given an estimate of the variation of Rfree in such cases and

this is included in Table 4.

Structure amplitudes of the two crystallins were used in a

jack-knife procedure in which each re¯ection belonged to a

subset containing approximately 10% of the data. Each

re¯ection was assigned to a subset by generating a random

Table 5
B- and �B2-crystallin least-squares structure-re®nement statistics using
10% test sets.

Mean and s.d. are the column mean and standard deviation, respectively.

Test set p Dinc Dfree Dratio

B-crystallin 0 2633 19468 3876 1.33
1 2581 19523 3477 1.28
2 2640 19473 3627 1.31
3 2640 19477 3776 1.31
4 2673 19423 3797 1.31
5 2625 19507 3625 1.29
6 2567 19573 3738 1.32
7 2573 19551 3441 1.27
8 2587 19514 3738 1.32
9 2616 19508 3860 1.33

Mean 2614 19502 3695 1.31
S.d. 18 133 0.02
S.d./mean 0.001 0.04 0.02

�B2-crystallin 0 1898 13624 2734 1.33
1 1815 13693 2606 1.33
2 1868 13615 2607 1.31
3 1887 13598 2710 1.33
4 1866 13658 2797 1.35
5 1855 13648 2714 1.34
6 1833 13661 2523 1.30
7 1814 13669 2484 1.30
8 1853 13614 2831 1.37
9 1894 13610 2569 1.29

Mean 1858 13639 2657 1.32
S.d. 18 105 0.03
S.d./mean 0.001 0.04 0.02

Table 6
B- and �B2-crystallin least-squares structure-re®nement R factors.

10% test sets were used. Mean and s.d. are the column mean and standard
deviation, respectively.

Test
set RGinc RGfree

RGfree/
RGinc Rinc Rfree

Rfree/
Rinc

B-crystallin 0 0.224 0.299 1.34 0.173 0.226 1.31
1 0.225 0.288 1.28 0.174 0.221 1.27
2 0.225 0.292 1.30 0.174 0.221 1.27
3 0.225 0.295 1.31 0.173 0.222 1.28
4 0.224 0.295 1.32 0.173 0.222 1.28
5 0.225 0.290 1.29 0.174 0.219 1.26
6 0.225 0.297 1.32 0.173 0.223 1.29
7 0.226 0.287 1.27 0.174 0.219 1.26
8 0.225 0.294 1.31 0.173 0.228 1.32
9 0.224 0.298 1.33 0.173 0.222 1.28

Mean 0.225 0.293 1.31 0.173 0.222 1.28
S.d. 0.0005 0.004 0.02 0.0005 0.003 0.02
S.d./mean 0.002 0.01 0.02 0.003 0.01 0.02

�B2-crystallin 0 0.212 0.275 1.30 0.176 0.218 1.24
1 0.211 0.279 1.32 0.175 0.227 1.30
2 0.211 0.280 1.33 0.175 0.224 1.28
3 0.211 0.283 1.34 0.174 0.232 1.33
4 0.211 0.287 1.36 0.174 0.232 1.33
5 0.211 0.282 1.34 0.175 0.223 1.27
6 0.212 0.274 1.29 0.176 0.216 1.23
7 0.212 0.274 1.29 0.176 0.213 1.21
8 0.210 0.293 1.39 0.174 0.234 1.34
9 0.213 0.273 1.28 0.177 0.212 1.20

Mean 0.211 0.280 1.32 0.175 0.223 1.27
S.d. 0.0007 0.006 0.03 0.0010 0.008 0.05
S.d./mean 0.003 0.02 0.03 0.006 0.04 0.04



number from a uniform distribution between 0 and 1, multi-

plying this number by ten and taking the integral part. This

produced an integer between 0 and 9 which identi®ed the test

set to which the re¯ection was assigned. Each subset was taken

in turn and used as a test set while the other nine subsets were

used as the working set in re®nement. Table 5 shows the

statistics resulting from these re®nements including Dratio.

However, R factors and RGratio are most readily available from

re®nement outputs and these are shown in Table 6. The jack-

knife tests were repeated using test sets containing approxi-

mately 5% of the data. Summary results are shown in Tables 7

and 8.

The variation of RGratio between test sets, as measured by

the fractional standard deviations (s.d./mean) is shown in

Tables 6 and 8. The variation in Table 8 is higher than the

statistical variation [�(RGfree)/RGfree] shown in Table 4. The

use of different test sets produces extra variability. This effect

is less pronounced with larger test sets, as shown by the

smaller values of s.d./mean in Tables 5 and 6 compared with

Tables 7 and 8.

6. Discussion

6.1. Origins of parameter errors and their effect on cross-
validation statistics

The origins of parameter errors in a supposedly re®ned

protein structure fall into ®ve categories.

(i) Missing higher resolution X-ray data owing to weak

diffraction and also absent data from correlated regions of

reciprocal space.

(ii) The choice of functional form of the structure-factor

model and associated statistical assumptions. For example,

isotropic mean-square displacement parameters are usually

used, even though proteins are known to exhibit signi®cant

anharmonic disorder. Missing atoms, misidenti®cation of

atoms, unmodelled and disordered solvent, lack of absorption

corrections, inappropriate rigid-body constraints, erroneous

assumptions in likelihood methods, errors in the scaling model

and inappropriate weighting of observations may also contri-

bute errors in this category.

(iii) Re®nement of an insuf®ciently accurate atomic model

of the protein which results in convergence to a wrong

minimum.

(iv) Under-re®nement of the model parameters, where

convergence is far from being achieved owing to insuf®cient

iterations of the re®nement process.

(v) Lack of precision of the observations (X-ray intensities

and restraints).

In a well re®ned structure of a small molecule, errors in

category (v) should dominate. However, in a protein structure,

where there is limited resolution and the conventional struc-

ture factor expression provides a relatively poor model, the

dominating errors will usually arise from category (ii). These

errors are in the functional form of the structure factor and

can be thought of in terms of missing parameters in the

structure-factor expression or, equivalently, the imposition of

incorrect parameter constraints. For example, the usual

isotropic model corresponds to constraining to zero all

anharmonic displacement parameters and all off-diagonal

parameters in the anisotropic displacement tensors while

constraining the diagonal terms to be equal. Errors in category

(iii) can also be thought of in terms of positional constraints

keeping the re®nement away from the correct minimum.

Inappropriate constraints will give rise to higher values of

both RG and RGfree. The RGratio, however, will increase when

the missing parameters are correlated with parameters present

in the structure-factor model. For example, at lower resolution

the displacement parameters are signi®cantly correlated with

the positional parameters owing to unresolved atoms. In such

a case, inappropriate displacement-parameter constraints will

cause the minimization of RG to produce erroneous shifts in

atomic co-ordinates. These shifts will not produce a downward

response in RGfree, and the RGratio will therefore increase

above that predicted by theory. This probably explains the

high RGratios found at the end of our crystallin re®nements. In

a similar way, category (iii) errors will also increase the RGratio.

The considerations of the previous paragraph might suggest

that protein re®nement should produce an RGratio higher than

that predicted by theory because some correlations with

missing parameters will always occur. Examination of the

®gure does not bear this out in all cases. This may be because

of category (iv) errors. The initial value of the RGratio, when the

working set has just been separated from the test set, will be

close to unity. As re®nement proceeds, the ratio rises. Some

crystallographers may consider that nothing is gained by fully

re®ning a protein structure, while others may only separate

their test set from the working set near the end of the

re®nement. Both these approaches will lead to smaller RGratios

than those predicted by theory and probably account for most

of the points below the a = 2 curve in Fig. 1. It should be noted

that serious use of the RGratio to detect errors requires

separation of the test set before the start of re®nement.

6.2. The effect of adding parameters on cross-validation
statistics

The above discussion has pointed out that constraining

parameters to incorrect values is likely to increase the RGratio

above the value predicted by theory. Conversely, adding

parameters which improve a model leads to a reduction in RG,
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Table 7
B- and �B2-crystallin least-squares structure-re®nement statistics.

Mean and s.d. are the mean and standard deviation for the 20 5% test sets for
each structure, respectively.

p Dinc Dfree Dratio

B-crystallin Mean 1307 20770 1809 1.29
S.d. 17 88 0.03
S.d./mean 0.001 0.05 0.02

�B2-crystallin Mean 929 14557 1335 1.32
S.d. 21 80 0.04
S.d./mean 0.001 0.06 0.03
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RGfree and the RGratio. However, adding parameters to an

already correct model (sometimes known as over-re®nement)

will tend to increase the RGratio, but in this case the increase is

predicted by theory, as can be seen by considering (6).

Conversely, reducing the effective number of re®ned para-

meters by applying appropriate restraints or contraints (for

example, in rigid-body re®nement) will reduce the RGratio and

(6) may be used to test whether or not the fall in this statistic

con®rms the appropriateness of the imposed restraints or

constraints.

As the addition of parameters to an already correct protein

model is likely to increase the re®ned RGratio, it might be

thought that the parameter set which gives the lowest RGratio is

the most appropriate. However, the goal of a protein re®ne-

ment is usually to answer a biological question, rather than

minimizing any given statistic per se. For example, it might be

important to know the standard deviations of metal-ligand

distances and therefore these distances should be freely

re®ned, even though by restraining them the RGratio might be

reduced.

6.3. Other considerations

Carrying out the work for this paper has forcibly reminded

us that there are no criteria for assessing whether a re®nement

has converged. Parameter shifts which are a fraction of one

standard deviation have traditionally been used as a conver-

gence criterion, but this assumes that the shifts are part of a

series whose sum will rapidly converge as re®nement

proceeds. This may not be the case, especially when function

minimization does not use a full normal matrix.

The theory developed in this paper has been in the context

of the least-squares method. However, many of the statistical

properties of least squares hold asymptotically for other

estimating regimes such as maximum likelihood or quasi-

likelihood (McCullagh & Nelder, 1989). This may also apply to

the statistical theory in the present paper.

6.4. Significance of cross-validation statistics

Both our exact and approximate theoretical expressions for

�(Dfree) take account of the errors arising from sampling the

set of free residual values from the population of sets of free

residual values. Also, both take account

of the correlations between the free

residuals within the test set. The differ-

ence is that the exact expression applies

to a speci®c choice of working set,

because it takes account of the effect of

choosing the working set and hence the

model via the matrix Q.

The estimates of the standard devia-

tion of Dfree obtained by choosing

different pairs of complementary

working and test sets also take account of

the sampling errors, even though the

sample is from the possible test sets rather than from the

population of values for a given test set. However, there are

now additional effects owing to the variation of the working

set and also correlations between different sets of free resi-

duals. As a result, one would expect the standard deviation of

Dfree between test sets to be greater than that within a test set

and this is what is observed. For example, compare the values

of �(Dfree) and �(Dfree)/Dfree in Table 5 with those of

s.d.(Dfree) and s.d.(Dfree)/mean(Dfree) in Table 7.

7. Conclusions

Interpretation of all cross-validation statistics requires special

care. For a signi®cantly wrong model, we assume (probably

correctly) that the RGratio will signi®cantly exceed its expected

value if suf®cient re®nement is carried out. However, an

under-re®ned incorrect model may yield an RGratio which is

close to the expected value. Thus, while a value of the RGratio

which is close to its expected value is not necessarily a

criterion for the correctness of a model structure, an RGratio

signi®cantly larger than the expected value should be a serious

warning that the model may need substantial revision.

An important question is how to use the RGratio to recognize

a wrong structure in the early stages of re®nement. This

requires an investigation of the behaviour of the RGratio during

the re®nement of wrong models. This work will now be

undertaken.

APPENDIX A
Properties of cross-validation statistics

A1. Expected value and variance of Dfree

In earlier papers (Tickle et al., 1998a,b), we have derived

expressions for the expected values and variance±covariance

matrices of the residuals at the convergence of a re®nement.

In order to derive an expression for the variance of the sum of

weighted squared residuals, we need to make some assump-

tion about their distribution. Here, we assume that they are

normally distributed.

First, we consider a vector of q random variables x with

distribution N(0, D), where D is the VCM of x. We now

transform x into a vector of independent unit normal deviates

y. De®ning y = Dÿ1/2x, then y ' N(0, Iq).

Table 8
B- and �B2-crystallin least-squares structure-re®nement R factors.

Mean and s.d. are the mean and standard deviation, respectively, for the 20 5% test sets for each
structure.

RGinc RGfree

RGfree/
RGinc Rinc Rfree

Rfree/
Rinc

B-crystallin Mean 0.226 0.291 1.29 0.175 0.220 1.26
S.d. 0.0004 0.007 0.03 0.0003 0.006 0.03
S.d./mean 0.002 0.02 0.02 0.002 0.03 0.03

�B2-crystallin Mean 0.213 0.281 1.32 0.176 0.224 1.27
S.d. 0.0005 0.009 0.04 0.0006 0.009 0.06
S.d./mean 0.002 0.03 0.03 0.003 0.04 0.04



The variance of the sum of squared random variables can
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The values of the variances in the above equation follow

immediately from the properties of independent unit normal

deviates, var(y2
i ) = 2 and var(yiyj) = 1. The covariances which

are between independently distributed random variables are

zero [for example, cov(yiyj, ykyl) and cov(y2
i , y2

j )] and are not

shown in (14). The other covariances involve non-independent

variables, but these also vanish because the moments of odd

order are zero in the following expansions,

cov�y2
i ; yiyj� � hy3

i yji ÿ hy2
i ihyiyji;

cov�yiyj; yjyk� � hyiy
2
j yki ÿ hyiyjihyjyki:

(14) therefore reduces to

var�xTx� � 2
P
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D2
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P
i

P
j
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ij: �15�

The right-hand side of (15) is twice the square of the Frobenius

norm of D, this norm being the square root of the sum of the

squares of the matrix elements. The square of the Frobenius

norm of a matrix is equal to the trace of its square and

therefore we can write

var�xTx� � 2kDk2 � 2tr�D2�: �16�
We now consider the random variables x to be a vector of

weighted residuals of the excluded observations. (16) may

then be used to evaluate the variance of the sum of the squares

of these weighted residuals, given the matrix of their second

moments. An expression for the latter was derived in Tickle et

al. (1998b) equation (19), where we showed that, in the

notation of this paper,

W
1=2
freeDfreeW1=2

free � Ip �Q: �17�
Taking the trace of both sides gives

hDfreei � tr�Ip �Q�
� p� tr�Q�; �18�

while by using (17) we can substitute D = Ip + Q in (16) giving

var�Dfree� � 2tr�Ip �Q�2
� 2�p� 2tr�Q� � tr�Q2��: �19�

The traces in the above two equations can be replaced by

summations over the eigenvalues of Q. (18) can be written as

hDfreei � p�Pp
i

�i; �20�

where �i is the ith eigenvalue of Q. Similarly, (19) can be

written as

var�Dfree� � 2 p� 2
Pp

i

�i �
Pp

i

�2
i

� �
: �21�

These results will be used in Appendix B, where approximate

expressions will be developed for the standard deviations of

Dfree and Rfree.

A2. The standard deviations of RGfree and RGratio

RGfree is de®ned as

RGfree � �Dfree=�free�1=2:

A rigorous derivation of the variance of RGfree (unpublished

results) follows the same lines as that given above for Dfree and

takes into account the variance of the denominator and the

correlation between numerator and denominator. However, a

good approximation can be given in cases where Dfree << �free

and consequently the fractional error in the denominator is

small. We can then write

�2�R2
Gfree� ' �2�Dfree�=�2

free

and the fractional variation R2
Gfree is then

��R2
Gfree�

R2
Gfree

' ��Dfree�
Dfree

:

Halving the right-hand side gives us the fractional variation in

RGfree as

��RGfree�
RGfree

' ��Dfree�
2Dfree

�22�

� �p� 2tr�Q� � tr�Q2��1=2

�2�1=2
Dfree

: �23�

RGratio is given by

RGratio � RGfree��inc=Dinc�1=2:

If the variation arising from the larger summations over the

working set is ignored, the fractional standard deviation of the

RGratio will be equal to that of RGfree,

��RGratio�
RGratio

' �p� 2tr�Q� � tr�Q2��1=2

�2�1=2Dfree

: �24�

APPENDIX B
Approximations for the standard deviations of Dfree and
RGfree

In Appendix A, we have derived expressions for the expected

value and variance of Dfree. Computation of these expressions

requires the inversion of the normal matrix. If this is not

possible, then we need to ®nd approximations which are more

readily calculated. We have already derived approximations
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for the expected values of Dfree and RGratio (Tickle et al.,

1998b) and these are given in (4) and (6), respectively. In this

appendix we derive, for both these statistics, approximate

expressions for their variances which can be calculated from

quantities readily available from a crystal structure re®ne-

ment.

According to (20) and (21) in Appendix A, the mean and

variance of Dfree can be written in terms of the eigenvalues of

the symmetric matrix Q of order p.

(21) can be rewritten in terms of the mean eigenvalue h�i
and the variation of the eigenvalues about their mean,

var�Dfree� � 2 p� 2
Pp

i

�i � ph�i2 �Pp
i

��i ÿ h�i�2
� �

: �25�

From (4) and (20), we havePp
i

�i � pd=f ; �26�

h�i � d=f : �27�
If we neglect the last term in equation (25) which expresses the

variation of the eigenvalues of Q about their mean, we obtain

from (25), (26) and (27),

var�Dfree� ' 2�p� 2pd=f � p�d=f �2�
' 2p� f � d�2=f 2:

Hence,

��Dfree� ' �2p�1=2� f � d�=f : �28�
Fractional standard errors are often of more practical value.

From (4) and (28), the fractional standard error of Dfree is

given by

��Dfree�=Dfree ' �2=p�1=2:

If Dfree << �free, we can use (22), (23) and (24) in Appendix A

and the fractional error in RGfree and RGratio is given by

��RGfree�
RGfree

' ��RGratio�
RGratio

' 1=�2p�1=2:
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